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Abstract

Hoarding disrupts the functioning of markets. Yet little is known about its determinants. We
analyze major recent hoarding episodes through the lens of an optimal inventory model in
which risk-averse agents hoard both as a precautionary hedge against price uncertainty and to
speculate when prices are predictable. Using supermarket scanner data, we provide reduced-
form evidence of the importance of the speculative motive due to sticky retail prices. We use
our model to quantify that speculation accounts for a meaningful fraction of overall hoarding,
although smaller than precaution in our episodes.
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1 Introduction

Hoarding is thought to disrupt market functioning by exacerbating shortages.1 During the COVID-

19 pandemic, stockpiling by households and firms was reported in a range of markets—from

household staples to semiconductors—distorting prices and creating bullwhip effects along the

supply chain (Shin, 2021).2 Similar issues are well documented during the energy crisis of the

1970s, the commodity price boom in the 2000s, and numerous other episodes.3 Despite the eco-

nomic importance of hoarding, there has been relatively little work examining its determinants.

We address this issue by analyzing household hoarding using high-frequency supermarket scan-

ner data that covers prominent recent stockpiling incidents in the US.

Our approach is based on a simple optimal inventory model of a risk-averse (mean-variance)

agent with storage costs. This model nests two incentives for stockpiling. The first is a hedging

motive driven by price uncertainty. Hoarding today provides insurance against coming price fluc-

tuations for a staple good. This precautionary motive — or its close cousin panic buying — forms

the prevailing popular narrative of retail hoarding.4

The second is a speculative motive driven by the expected level of prices. If price increases

are partially predictable, even risk averse agents face an incentive to speculate and cheaply secure

their own supply (Scheinkman & Schechtman, 1983; Deaton & Laroque, 1992). While this mecha-

nism has received less attention as a determinant of retail hoarding—perhaps because households

are not thought to have an informational advantage over market prices in standard models—our

framework allows us to derive a tractable test to quantify the relative importance of precaution

and speculation.

The distinction is relevant for firms and policymakers. As the widespread adoption of anti-

price gouging measures demonstrates, precautionary stockpiling is a salient concern for policy-

makers (see, e.g., Zwolinski, 2008; Giberson, 2011).5 Whether anti-price gouging regulations are

1See, e.g., Sen (1983) on the role of hoarding in the Bengal famine of 1943 or Priest (2012) on the 1970s energy crisis.
2On consumer and firm behavior during the pandemic, see, e.g. “Coronavirus: The psychology of panic buying,”

BBC, March 4, 2020, "Are bottlenecks bullwhip?", Financial Times, December 9, 2021, and “Carmakers hoarding semicon-
ductors like ’toilet paper’ risk prolonging the chip shortage”, Euronews.next, July 13, 2021.

3On the energy crisis, Priest (2012) writes: "Motorists, whose consumption of gasoline rose from 243 gallons per
capita in 1950 to 463 gallons per capita in 1979, compounded supply problems by hoarding fuel, idling their engines in
gas lines, and frantically topping off their tanks with frequent trips to the local filling station."

4For example, see Dawe (2012) and "How Fear Turned A Surplus into Scarcity," NPR, November 4, 2011 on the
commodity crisis.

5The first US state law directed at price gouging was enacted in New York in 1979, in a period of commodity market
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welfare enhancing is far from clear, particularly if consumers are driven by speculation. Unless

cost increases are truly transitory, price caps can exacerbate speculative stockpiling and erode firm

profits.

Our paper has three parts. In the first, we argue that a standard retail phenomenon—sticky

shelf prices—makes the speculative motive present for a wide range of hoarding episodes. A

large literature documents sluggishness in price adjustment (Nakamura & Steinsson, 2008; Kehoe

& Midrigan, 2015), even after the cost shocks or disasters that typically precede consumer stock-

piling (Cavallo et al., 2014; Gagnon & Lopez-Salido, 2015). If households recognize that prices are

sticky and likely to rise in the future, they will be motivated to shift demand intertemporally and

stockpile storable goods.

To do so, we provide reduced form evidence that a sticky-price based speculative motive drove

household purchases during a major recent episode: the 2008 global rice crisis. The crisis was

sparked by a supply shock (from a US perspective)—a ban on Indian rice exports in the fall of

2007. This shock led rice prices in commodities markets to rise by roughly 300 percent, peaking

in April and May of 2008. Retail prices did not catch up until later in 2008. The time series of

consumer purchases shows that households hoarded at relatively low cost before shelf prices rose.

The cross-section of hoarding behavior further confirms the presence of a speculative motive.

While prices were slow to adjust for nearly all rice products during the crisis (and in nearly all

stores) there is considerable dispersion in the size of later price increases. These differences were

generated by heterogeneity in the exposure of products to the wholesale cost shock, ex-ante pricing

policies, and more. We show that consumers stockpiled rice most in the products and stores that

later saw the greatest increases. These patterns do not appear to be the spurious result of reverse

causality (retailers pricing in response to excess purchases), differences in price levels during the

crisis itself, or hoarding acting as a signal of future demand.

Since households are likely to hoard due to both speculative and precautionary motives— in the

second part of our paper—we use our model to derive a forecast test that quantifies their relative

importance. The intuition underlying our two-step test is that a household’s purchases encode

their ex-ante beliefs about prices. As a result, the covariance between stockpiling and ex-post

realized price changes reflects the degree to which consumers are driven by a speculative motive.

instability. These laws have proven popular—most states now have some type of regulation (Davis et al., 2008).
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The challenge is translating quantities purchased into a meaningful statement about future prices.

The basic insight of our first step is that the consumer response to standard, non-crisis, re-

tail sales provides a benchmark for beliefs. Excess quantities purchased during a typical retail

promotion capture households’ sensitivity to known and certain future price increases.6 By mea-

suring consumer stockpiling during these promotions, we can back out the elasticity of purchases

to future price changes under perfect foresight (which in our model is governed strictly by stor-

age costs). Assuming this elasticity is stable, we are able to use observed stockpiling during the

crisis—across products, brands and stores—to recover what we call risk-neutral price forecasts.

These represent consumers’ implied price expectations if all excess purchases were driven by a

speculative motive.

In the second step of our test we estimate a linear regression of ex-post realized price changes

on these forecasts. This is reminiscent of efficient forecast tests in the spirit of Mincer & Zarnowitz

(1969); Nordhaus (1987); Keane & Runkle (1990) utilizing cross-sectional rather than time-series

variation. The slope of the regression of realized price changes on expected price changes captures

the efficiency of the price forecasts we recover. The model makes direct predictions on the coef-

ficient from this regression. If all hoarding is generated by a speculative motive (e.g., because of

risk neutrality) and consumers have rational expectations, we expect a slope of 1. The presence

of a precautionary motive drives the coefficient below 1, tending to 0 as this incentive dominates.

Across products and stores, we estimate a statistically significant slope of just over 0.1, indicating

that speculation played a meaningful but smaller role than precaution in the hoarding episode we

study.7

In the third and final portion of our paper, we re-apply our test to consider rice hoarding dur-

ing the recent COVID-19 episode. The setting is a bit more complex than the 2008 rice crisis—

consumers faced both changing prices and new, COVID specific demand shocks—and compre-

hensive data is not yet available. However, we are able to access a more limited scanner dataset

that covers the first months of the pandemic. We find very similar qualitative patterns hold in this

recent episode, albeit with a smaller role for speculation. These results complement early work

6For example, consumers are aware that a good marked down temporarily from $100 to $80 will experience a 25%
increase when the promotion ends.

7Since classical measurement error may downward bias this slope, we view our estimate as a lower bound on the
contribution of the speculative sticky-price motive to hoarding.
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using Google search data (Keane & Neal, 2021).

Beyond providing a systematic study of the drivers of consumer hoarding, our paper con-

tributes to a couple of other literatures. We provide a method to address a long-standing chal-

lenge in the commodities literature of distinguishing between speculative versus hedging demand

(Fama & French (1987), Bessembinder (1992), Gorton et al. (2013), Kang et al. (2020)). Our test and

empirical findings also contribute to a large body of research on the role of speculation in the 2000s

commodity bubble (Kilian & Murphy, 2014; Hamilton, 2009; Tang & Xiong, 2010; Singleton, 2013;

Acharya et al., 2013). Finally, we provide evidence on the role of household speculation in a sticky-

price or menu cost setting (Barro, 1972; Sheshinski & Weiss, 1977)), a long-standing issue in that

literature that goes back to Benabou (1989). Such speculation informs specific firm-level cost to

sticky-pricing policies (Gorodnichenko & Weber, 2016).

Our paper is organized as follows. In section 2 we describe our data. In section 3 we provide

an overview of the 2008 rice crisis and show time series evidence on the presence of a speculative

motive. In section 4 we provide evidence based on the cross-section of products and stores. Section

5 introduces our model and outlines our forecast test. Section 6 provides a discussion of hoarding

in the COVID-19 crisis. We conclude in section 7.

2 Data

Our primary sources of household and store-level data are the Nielsen retail scanner and consumer

panel datasets held at the Kilts center. In both, we consider weekly data from 2007-2009 and limit

the sample to packaged and bulk rice products.8

Retailer Data

For our store-level data we consider food retail channels only. This leaves us with 10,561 unique

stores. The data contain weekly store-UPC (Universal Product Code) level prices and quantities

sold, as well as product and store characteristics. In various parts of our analysis, we consider

aggregated store level data, store-UPC level data, and store-brand level data. To avoid rarely

bought products when considering UPC or brands, much of our analysis restricts to store-UPC or

8UPCs with product module code 1319.
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store-brand pairs with at least 5 units per week sold on average in 2007. This restriction leaves us

with 71,952 store-UPC pairs representing 547 unique UPCs for our store-UPC level data and 43,953

store-brand pairs representing 154 unique brands for our store-brand level data.

When considering aggregate store level data, our primary quantity measure is the total volume

of rice sold across all UPCs (measured in ounces). Our primary price measure is the sales weighted

average price per 80 ounces across all UPCs. Our results are robust to alternative price definitions,

for example considering equal weighted prices, fixing 2007 sales weights, or considering only the

price of the most popular UPC within each store. Panel A of Table 1 presents summary statistics

on store level aggregates. In our sample, the average store sold just over 8000 ounces of rice per

week, with an average price of $5.39 per 80 ounces.

Panel B of Table 1 provides summary statistics for store-UPC level data. The average UPC

represented in our data contains 52.6 ounces of rice (16, 32 and 80 ounces are all common sizes).

11.5 units per week were sold on average, representing just under 700 ounces. The average price

per 80 ounces was $5.58. Panel C provides summary statistics at the store-brand level. On average

27 units were sold per week at the store-brand level, representing just under 1700 ounces.

Consumer Data

The consumer panel covers between 40,000-60,000 demographically balanced U.S. households

each year who use hand-held scanners to record every bar-coded grocery item purchased. The

broader dataset records every purchase made at the UPC level. There is also detailed demographic

information. Appendix Figure A.I plots the distributions of various demographics of the Nielsen

Panel. We restrict the panel to households we observe purchasing packed or bulk rice products at

least once between 2007-2009. This leaves us with 42,441 unique households. Panel D of Table 1

presents summary statistics on this restricted household sample. The average quantity purchased

by a household in a given week is just under 2 ounces, although households typically purchase

about 72 ounces in weeks when they purchase.

Overall, the households in our data are similar to the general population in terms of income.

The median household in our data earns $50,000-60,000 per year. The median for all US households

in 2008 was $51,726 (Noss, 2010). Households in our data appear to be slightly better educated

than the general population—roughly 53 percent of our sample has a college education or higher,
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compared to the 38 percent of adults over 25 reported to have an associates or bachelors degree in

2008.9 Finally, our sample also has slightly lower fraction of Asian households: 3.4 percent of our

sample is Asian, lower than the 5.6 percent reported in the 2010 census.

We also construct a balanced household-brand level panel dataset that considers only rice pur-

chases at stores that also appear in the Nielsen retail scanner data. This panel contains just under

18,000 households purchasing 168 unique brands at 8,194 different stores. While this restriction

meaningfully limits the set of households, it allows us to construct a consistent store-brand level

price series to capture the prices faced by consumers in weeks they did not purchase rice. For this

panel we define the store-brand level price as the equal weighted price per 80 ounces across the

UPCs sold in that week for that brand and store. In the limited cases in which no UPC for a brand

was sold in a given store and week, we impute using the price in the store in the previous week.

3 Aggregate Time Series Evidence on Sticky Store Prices and Hoarding

3.1 Overview of the Rice Crisis and Commodity Price Dynamics

Rice commodity prices skyrocketed in mid-2008. The price increase was accompanied by unrest

in Haiti, Bangladesh, and elsewhere in the developing world, surges in purchasing globally, and

new restrictions to ensure domestic supply for a number of exporters.10 These events received

widespread media attention in the US and across the world.

Retrospective overviews highlight political factors as the key trigger for the 2008 global rice

crisis. According to Dawe & Slayton (2010) and Slayton (2009), the crisis began with India’s elec-

tioneering driven 2007 ban of rice exports, was compounded by restrictions in Vietnam and else-

where, and continued until Japan agreed to release rice reserves to global markets in mid-2008.11

While the late 2000s saw instability in energy and other food commodity prices, the political na-

ture of the rice crisis meant that spikes in rice prices had a “fundamentally different explanation”

in comparison to fluctuations in the price of other major cereals (Dawe, 2012).

Figure 1 displays the dynamics of commodity prices during the crisis. The solid black line

9See the U.S. Census Bureau, Current Population Survey, 2008 Annual Social and Economic Supplement.
10See, e.g. https://www.cnn.com/2008/WORLD/americas/04/14/world.food.crisis/ for contemporary coverage of

unrest and Childs et al. (2009) on export restrictions.
11A World Trade Organization agreement had mandated that Japan import US rice while limiting re-export, generat-

ing significant stock in Japan. The US publicly provided permission to re-export in mid May of 2008.

6

https://www.cnn.com/2008/WORLD/americas/04/14/world.food.crisis/


shows a proxy for the global price of rice on commodities markets from the IMF, highlighting the

crisis and associated events.12 A sharp increase is evident following the first vertical line (a peak

of around $1000 per metric ton), which represents the Indian ban on exports in October 2007, as is

a correction following the second vertical line, which represents the late May 2008 news of Japan’s

agreement to release reserves. Even with this correction, the global price converged to a level well

above the pre-ban average, rising from $332 per metric ton on average in 2007 to $589 per metric

ton on average in 2009, a nearly 80 percent increase.

3.2 Sticky Store Prices

Despite the massive increase in commodity prices, prices on the shelf in the US were sticky—

basically unchanged—for nearly all retailers through the peak of the crisis. Figure 2 displays the

fraction of stores that updated retail prices in the wake of the shock to commodity prices. While

there is no standard definition of price adjustment, we take what we believe to be a relatively

conservative approach. We define a store to have updated if its price is greater than 125 percent of

its 2007 average price.13 As commodities prices rose through the beginning of 2008, a very small

fraction of stores updated prices according to our metric. Even this limited fraction appears to be

on trend with regular (and gradual) price increases relative to 2007.

Notably, the large majority of stores failed to update prices through the weeks of April 19th-

May 10th (highlighted in gray), which we refer to as the hoarding period. This interval just before

the Japan agreement represents the most intense period of the crisis, in which commodity and

wholesale prices hit their peak, and—as we shall see in the next subsection—the most aggressive

consumer hoarding took place. In the weeks following the hoarding period, stores updated rapidly

to match the long run increase in commodities prices: half updated within a few weeks and more

than 75 percent updated within a few months.

Price stickiness is perhaps more easily observed in Figure 3, which compares the dynamics of

US wholesale prices and retail shelf prices. The black line captures a proxy for US wholesale prices,

which largely track international rice prices—rising through the beginning of 2008 and peaking in

12This line presents the rice series from the IMFs Primary Commodity Price System. The series measures the Thailand
nominal price quote for 5 percent broken milled white rice in USD per metric ton and is available at https://www.imf.
org/en/Research/commodity-prices.

13While this threshold is somewhat arbitrary, we get similar patterns when we consider different cut-offs, e.g. 110
percent.
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the hoarding period (shown in gray).14 Alternatively, retail shelf prices from our store level data,

shown in blue, did not rise at all with wholesale prices, staying flat or even declining slightly until

after the peak of hoarding.15 After the hoarding period, shelf prices increased to and stabilized

at a higher price, mirroring long run commodities price dynamics. The average price in the post

hoarding period was 35 percent above the average price in the pre-hoarding period. Relative to

the 80 percent increase in wholesale prices, this represents a pass-through of just over 40 percent,

on par with findings for other storeable goods (Leibtag, 2007). These patterns are consistent with a

large literature in macroeconomics: the retail or supermarket prices that consumers face are sticky

and tend to lag changes in commodities prices.16

3.3 Consumer Hoarding Anticipated Retail Price Changes

We now show evidence of the key phenomenon of our paper: severe consumer hoarding dur-

ing the rice crisis. The red line in Figure 3 shows the pattern of total quantity sold by stores in

our sample, which spiked sharply during the crisis and reached its highest point in the hoarding

period (April 19th-May 10th). The average store sold over 11,000 ounces of rice per week dur-

ing this hoarding period compared to an average of just under 8,000 ounces in all other weeks of

our sample. The most intense week featured average purchases that were more than 65 percent

above average. Notably, this increase in store sales roughly coincided with or slightly followed the

peak of global commodities prices. Similar or even more severe consumption patterns were noted

internationally.17

The key pattern displayed by this figure is the timing of the spike in consumer purchases rel-

ative to the increase in retail prices. Effectively all excess purchases occurred in the weeks before

store prices began to increase. As retail prices began to rise in mid-May, quantity sold returned to

14The proxy is based on the average f.o.b. price for long grain rice at selected milling centers in Southwest Louisiana.
Data provided by USDA, based on data from Agricultural Marketing Service, National Weekly Rice Summary. We scale
the series by its mean over the sample period

15We similarly scale this series by its mean over the sample period. One potential concern is that the observed delay
in adjustment of our price index might be an artifact of consumer substitution across types or qualities of rice. For
example, if retailers increased all rice prices but consumers responded by substituting to the cheapest products, the two
effects might cancel out in our aggregated price index. To address this, Appendix Figure A.II replicates Figure 3 but
includes a measure of prices that holds product types fixed. In particular, this figure shows the equal weighted average
across all UPC-store pairs that appear consistently throughout our sample.

16Although McShane et al. (2016) show that a meaningful fraction of positive wholesale price changes are eventually
passed on to consumers.

17See, e.g. https://www.reuters.com/article/uk-philippines-rice/philippines-arroyo-leads-crackdown-on-rice-hoarding-idUKMAN1898020080508.
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levels similar to or slightly below those in the pre-crisis period. Appendix Figure A.III shows a sim-

ilar pattern for purchases in our household sample: household inventories peaked in the hoarding

period, prior to any meaningful increase in retail prices. Overall, consumer hoarding during the

rice crisis coincided with or slightly lagged commodity and wholesale prices, but anticipated the

rise in retail prices.

The basic patterns in commodity, wholesale and retail price dynamics, as well as in household

and store sales, are summarized and quantified in Table 2. This table presents regressions of the

time series of (i) IMF commodity prices, (ii) US wholesale prices, (iii) average household quantities

purchased and prices paid, and (iv) average store level quantities sold and prices charged, on an

indicator equal to one in the hoarding period. For (i) and (ii), which are monthly, the hoarding

period is defined as April and May of 2008. The remaining series are weekly, and the hoarding

period is defined as the weeks of April 19th-May 10th. Price time series are constructed as sales

weighted across products within households or stores, and equal weighted across households or

stores. As shown in the Figures discussed above, commodity prices, wholesale prices, and quanti-

ties sold were significantly above average during the hoarding period, while retail prices were not.

In fact, because of the high retail prices in the post-hoarding period, the coefficient on the hoarding

period indicator for both household and retail prices is negative.

3.4 Retailer and Consumer Awareness

Given the extent of press coverage, producers and stores were likely aware of the wholesale rice

price increase—a cost shock from their perspective—emanating from the India ban. Even without

the media, retailers could easily have aggregated this information from wholesale prices and rice

futures. Both the global commodities price (shown in Figure 1) and rice futures for May, July, and

September of 2008 (shown in Appendix Figure A.IV) rose steadily through the first months of 2008

before reaching a high in April. Prices for all three futures contracts peaked on April 23rd, in the

midst of consumer hoarding. At this point, July futures prices exceeded May prices, suggesting

that the market anticipated prices remaining high and even rising over the course of the next

several months. Put simply, it is doubtful that sticky retail prices were the result of an information

gap. Retailers could easily have recognized that prices were rising in the beginning of 2008, and—
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at the peak—should reasonably have expected prices to remain high for several months.18

Similarly, there appears to have been heightened consumer awareness of the rice crisis. While

it is unlikely that the average consumer closely tracks wholesale or rice futures prices, the blue line

in Appendix Figure A.V shows a notable spike in Google searches for the term “Rice” during the

hoarding period. This figure presents a search volume index representing the weekly intensity of

Google searches in the US between 2007-2009 (normalized by the average over the sample period).

The IMF commodities price and quantity sold at the store level are included for comparison in

black and red, respectively. This elevated search volume was likely prompted by media reports

and suggests higher than typical consumer attention on the rice market.

3.5 The Speculative Motive Generated by Sticky Prices

Given of the limited connection between rice price dynamics and more general commodity price

fundamentals, prevailing views of the rice crisis suggest that panic or precaution driven hoard-

ing generated artificial shortages and exacerbated the price shock.19 Classic narratives along these

lines have consumers panicking just as prices skyrocket, leading them to purchase large quan-

tities at high prices.20 A simple comparison of consumer purchases and commodities prices in

our episode would support this view. Excess purchases were concentrated at the very peak of

commodities prices.

However, excess purchases preempted any change in the retail prices consumers actually faced.

Consumers hoarded while shelf prices were low, before they rose to a permanently higher level.

This is consistent with an alternative mechanism driving hoarding: the speculative motive gener-

ated by sticky prices. The logic of this mechanism is simple: if there is a shock to wholesale prices,

but retailers are slow to respond, consumers have an incentive to build up inventories of a storable

good like rice before shelf-prices rise. The implicit discount generated by sticky prices—relative

to a sustainable long run price—will cause consumers to shift demand dynamically and stock up,

just as they would when facing a standard retail promotion or sale.

18Futures prices show daily close prices for rice futures with expiration in May 2008, July 2008 and September 2008
from the Chicago Mercantile Exchange. The futures contract is for 2,000 cwt (hundredweight), which corresponds
to about 200,000 pounds or circa 91 metric tons, of rough rice, no. 2 or better, and the price quote is in cents per
hundredweight.

19Much coverage of the episode emphasizes a precaution or fear narrative ("How Fear Turned A Surplus into Scarcity,"
National Public Radio, November 4, 2011 and “A Run on Rice in Asian Communities,” New York Times May 1, 2008).

20See, e.g., https://spectrumlocalnews.com/nc/charlotte/news/2021/05/11/higher-prices--panic-buying--what-the-colonial-pipeline-hack-means-for-north-carolina
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Retail prices in the hoarding period were approximately 22 percent below the post-hoarding

average price. If consumers were forward looking and interpreted prices during the hoarding

period as a 22 percent discount, standard promotional elasticities from the literature (and those

that we estimate in Section 4) suggest that a speculative motive could explain a substantial fraction

of the excess purchases that took place during the crisis.21

Of course, the fact that consumer hoarding came before the increase in retail prices is not con-

clusive evidence of a speculative motive at work. It is possible that consumers were driven by

some form of panic or precaution—perhaps after hearing about potential shortages on the news—

and that the subsequent growth in aggregate prices was coincidental. To rule out this possibility,

the next section of this paper shows that speculation also appears to have driven hoarding in the

cross-section of products and stores.

4 Cross-sectional Evidence on Sticky Store Prices and Hoarding

In this section we develop a series of tests using the cross-section of excess purchases and sub-

sequent price changes for different rice products, brands, and stores to distinguish a speculative

motive from panic or precaution. As long as consumers have some information about the com-

ing cross-section of price changes—due to knowledge of the exposure of a particular product to

the shock, familiarity with the pricing patterns of a particular store, or attention to pre-crisis price

increases—excess purchases should predict later price increases. That is, under a speculative mo-

tive, we should expect more hoarding in the products or stores with the largest subsequent price

increases. Alternatively, if hoarding is strictly driven by a precautionary hedging motive there

should be no relationship between hoarding and future price changes in the cross-section.

4.1 Dispersion in Price Changes

We begin by showing that there was substantial cross-sectional dispersion in price changes follow-

ing the hoarding period. While prices increased for nearly all products after the crisis, the size of

this increase varied significantly. Cross-sectional dispersion is the result of a number of factors,

21For example, Bergtold et al. (2004) estimate unconditional price elasticities of roughly -1 that do not factor in the
additional dynamic incentive provided by temporary sales.
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including differential exposure to the underlying cost shock, different degrees of ex-ante price ad-

justment (certain products had already experienced some amount of regular updating prior to the

crisis), different ex-post pricing policies, and more.

Figure 4 displays this cross-sectional dispersion, showing histograms at various levels of aggre-

gation. We present price changes as percentage increases relative to the hoarding period. Specifi-

cally, if we let p̄hi represent the average price of unit i during the hoarding period, and p̄ai represents

the average price in the post-hoarding portion of our sample (from May 10th, 2008 to the end of

2009). We define

Post-Hoarding Price Growthi = 100×
(
p̄ai − p̄hi
p̄hi

)
.

For example, if a price was $8 during the hoarding period and $10 in the post-hoarding period,

this would translate to a realized increase of 25 percent.

In Panel A, we report a histogram of realized increases for store-UPC pairs in our sample.

The median change is over 20% and nearly all store-UPCs saw an increase. There is considerable

dispersion: the 25th percentile is below 15 percent while the 75th percentile is nearly 40 percent.

The same patterns holds for the histogram of price discounts for store-brand pairs shown in Panel

B, and for the set of stores and brands shown in Panels C and D. This substantial cross-sectional

dispersion forms the basis for our tests.

4.2 Cross-Sectional Predictability

Consistent with a sticky-price motive, we next show that consumer purchases predict price in-

creases in the cross-section. Consumers hoarded more aggressively in products that later saw

larger price increases. This suggests that consumers were aware that prices were sticky and were

able to predict the products that would experience the most significant price growth.

Hoarding Concentrated in Products With Large Post-Crisis Price Increases

We begin with graphical evidence that hoarding was concentrated in the products that later expe-

rienced large price increases. We categorize a store-UPC to have had a high post-hoarding price

increase if it is in the top quartile of increases among all store-UPC pairs, and to have a low post-

hoarding price increase if it is in the bottom quartile. Figure 5 plots quantities sold and price-per-
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ounce over our sample period for each of these two groups. All series are normalized by the group

average over the full sample. The top panel shows that purchases during the hoarding period were

more than double the average for store-UPCs in the top quartile of post-hoarding price increases.

On the other hand, there was very little excess purchasing for store-UPCs in the bottom quartile

of post-hoarding price increases. This is consistent with consumers being driven by a speculative

motive.

Cross-sectional regression evidence

We now provide a more direct evaluation of this pattern—consumers hoarding more in the prod-

ucts that later increased prices sharply—at the product, brand, and store levels. We conduct our ap-

proach by regressing realized post-hoarding price growth on quantity increases during the hoard-

ing period. Specifically, if Quantity Growthi is the percentage increase in average weekly sales

during the hoarding period relative to average weekly sales in the pre-hoarding period, we con-

sider: 22

Post-Hoarding Price Growthi = α+ λQuantity Growthi + εi. (1)

Our basic test asks whether the degree of hoarding—captured by Quantity Growthi—contains

information about coming price growth, that is, whether λ > 0. If consumers are forward looking,

have information regarding coming price changes, and are motived by the speculative incentive

generated by by sticky prices, then excess purchases should positively predict future prices, on

average.

We present results of our tests in Table 3 and Figure 6. These results show estimates of Equation

1 at the store-UPC, store-brand, store, and brand levels. The binned scatterplots shown in Figure

6 present perhaps the most striking evidence of cross-sectional predictability. The relationship

between forecasted discounts and realized discounts is roughly monotonic and close to linear for

22 If qbi represents average weekly quantity sold before the hoarding period and qhi represents the average weekly
quantity sold during the hoarding period, we define

Quantity Growthi = 100×
(
q̄hi − q̄bi
q̄bi

)
.

We find similar results when considering excess purchases relative to weekly sales in the post-hoarding period or rela-
tive to the period as a whole. We focus on the pre-hoarding period to avoid purchase decisions influenced by inventories
built up while hoarding.
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store-UPCs, store-brands and stores. At each point in the distribution, consumers purchased more

of the products that later experienced greater price increases. This suggests that consumers were

aware of coming price changes, and were motivated to stock-up more for prices that later increased

the most.

Table 3 presents the results of our regressions, which confirm a strong relationship between

hoarding intensity and price growth. Columns 1-3 display our store-UPC level analysis. The

first column presents the specification shown in Equation 1 exactly, and shows a positive and

highly significant coefficient. The magnitude suggests that products that experienced 10 percent-

age points more hoarding during the crisis later saw increases in price that were one percentage

point higher than other products. Columns 2 and 3 confirm that this results holds when including

store fixed effects, and the combination of store and UPC fixed effects. This suggests that the cross-

sectional relationship between hoarding and price increases is not simply an artifact of hoarding

in certain specific stores or UPCs.

Columns 4-6 display our store-brand level analysis, and show similar results. Columns 7 and

8 show results aggregated to the store level and aggregated nationally to the brand level, respec-

tively. In each of these cases we continue to see a strong and positive relationship between quantity

growth during the hoarding period, and post-hoarding price growth. The takeaway is straightfor-

ward: consumers hoarded most in the individual products, brands, and stores that later saw the

greatest price increases.

We interpret this pattern as evidence of a speculative motive at work. Because of prices stick-

iness, consumers were aware of coming prices changes during the hoarding period. They acted

on this information by stocking up on products or in stores where they expected shelf prices to

increase substantially. However, there are a series of alternative explanations that might generate

similar patterns. We next discuss these and provide evidence in favor of the speculative motive.

Addressing Alternative Explanations

Lower prices during the crisis One alternative explanation for our cross-sectional evidence is

that products (or stores) with particularly low prices during the hoarding period were differen-

tially likely to have large price increases in the post-hoarding period. This could be, for example,

because the product or store had not recently updated prices before the crisis. If consumers exces-
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sively purchased low price products during the crisis, this might generate the observed correlation.

Panel A of Table 4 shows that this is not the case. This table repeats the analysis in Table 3, but

explicitly includes a control for the level of average unit prices during the hoarding period. We see

a significant negative coefficient on the price level, but the relationship between hoarding intensity

and shelf price growth is effectively unchanged across specifications.

Reverse causality

An additional concern is that the correlations shown in Table 3 might reflect a causal channel,

rather than consumer expectations about coming price increases. Specifically, that stores changed

prices as a result of the degree of excess purchases during the crisis. Perhaps the most compelling

evidence against this concern is the permanence of shelf price increases following the hoarding

period. As Figure 3 shows, the aggregate increase in shelf prices persisted through the end of our

sample period. A similar pattern holds at the disaggregated level. Products and stores that saw

large price increases in the period immediately-post hoarding continued to have relatively high

prices towards the end of our sample. This is likely because price changes reflected real changes

in costs rather than a response to transitory hoarding purchases.

To highlight this point, Panel B of Table 4 presents an alternative version of Table 3 in which

we consider the very long run change in prices. Specifically, we redefine our measure of post-

hoarding price increase to be the percentage increase in the price when comparing the last week

of our sample (the last week of 2009) to the average in the hoarding period. The logic behind this

exercise is that price responses to transitory increases in demand should themselves be transitory.

We find results that are largely similar to our baseline specifications. This suggests that, for the

causal channel to be a concern, it must then be the case that highly transitory increases in purchases

during the hoarding period determine differences in prices more than 18 months later. While

perhaps remotely plausible given sticky prices, the length of time elapsed begins to strain credulity.

Hoarding as a signal of future demand

An alternative but related possibility is that the degree of transitory hoarding during the crisis was

a signal of a permanent increase in demand, and that heterogeneity in price increases reflected

these permanent changes. This does not appear to be the case. For example, define store level
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post-hoarding quantity growth as 100×
(
q̄ai −q̄bi
q̄bi

)
, where qai represents average quantity sold in the

post-hoarding period. If we regress this measure on Quantity Growthi during the crisis, we get a

slight negative coefficient (≈ −0.05). If anything, this indicates that stores facing greater hoarding

during the crisis actually saw slightly less demand in the future (perhaps because customers had

already build up inventories).

5 Quantifying Speculative versus Precautionary Motives

The combination of our time-series and cross-sectional evidence indicates that consumer hoarding

was, at least to some extent, motivated by speculation on sticky prices. However, this does not

rule out the possibility that precautionary concerns also play a role. In this section we build a

forecast test based in a simple theoretical model that allows us to quantify the relative importance

of speculative and precautionary motives. We then implement this test in the context of the rice

hoarding episode.

5.1 Model

We base our test on a model of optimal household hoarding that combines both speculation (be-

cause stickiness makes price changes partially forecastable) and hedging (because households re-

quire a baseline level of the staple, they are effectively short rice and exposed to price risk). Sup-

pose a household can choose a level of inventory (or hoarding) I by purchasing the good today

at known p0. Tomorrow, the household faces an uncertain price p1 and must consume b > 0 units

of rice.23 We assume that the risk-free rate is zero, the households initial wealth is w0, and wealth

next period is given by:

w1 = (w0 − Ip0) + Ip1 − bp1.

Here, b is the households exposure to price risk.

We assume a simple mean-variance utility specification with a coefficient of risk aversion of γ,

23This assumption captures, in a stylized way, the fact that rice is a staple good.
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and that households face quadratic storage costs C(I) ≡ cI2/2. The household problem is then

MaxI
{

E[I(p1 − p0)− bp1]−
γ

2 Var[I(p1 − p0)− bp1)]−
c

2I
2
}

.

The first-order condition with respect to I gives:

I∗ =
E[(p1 − p0)] +

≡ h0 (hedging motive)︷ ︸︸ ︷
γbCov[(p1 − p0), p1]

c+ γVar[(p1 − p0)]
=

E[(p1 − p0)] +

h0︷︸︸︷
γbσ2

p

c+ γσ2
p

, (2)

where I∗ is the optimal hoarding level and σ2
p = Var[p1].

From equation (2) it is immediately clear that the optimal level of hoarding is increasing in the

expected price change, which will tend to be positive when prices are sticky. This is the speculative

motive. In particular:
∂I∗

∂E[(p1 − p0)]
=

1
c+ γσ2

p

> 0.

If there is no uncertainty, the optimal inventory level is given by

I∗ =
E[p1 − p0]

c
=
p1 − p0

c
. (3)

So when uncertainty is low, for example, during a regular retail promotion, the sensitivity of in-

ventories to expected price changes is modulated solely by the storage cost c.

Hoarding also arises from precautionary or hedging demand as captured by the h0 in equation

(2). As b > 0 grows, households will hoard more because I∗ is a hedge against uncertainty in p1.

Furthermore, as long as inventories lie below b, an increase in uncertainty about future prices will

lead to more hoarding for risk averse households:

∂I∗

∂σ2
p

=
γ

c+ γσ2
p

(b− I∗)

which is positive if b > I∗. This is the precautionary motive for household hoarding.
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5.2 A Two-Step Test

Based on this simple model, we derive an empirical test in two steps to assess the relative impor-

tance of speculative versus precautionary motives for hoarding. We introduce a subscript i for

cross-household variation that captures households facing different prices p1i and having different

exposure to rice price risk bi. For simplicity, we assume that storage costs and risk aversion are

constant across households.

Step 1: Recovering Risk Neutral Forecasts. In the first step, we recover the key parameter gov-

erning storage costs (c), which determines consumer sensitivity to future price changes when there

is no uncertainty. To do so, we examine situations in which coming price changes are clearly ad-

vertised and well understood by households: retail sales during normal, non-crisis, periods. The

basic idea is to regress observed stockpiling when a product goes on sale against the size of the

sale (measured as the post-sale price increase). Under the assumption that there is no uncertainty

about the size of the sale, and that consumers therefore know p1i − p0i , this allows us to recover

an estimate of the convex storage cost ĉ.24

We can then use our estimate of ĉ to generate what we call a risk neutral forecast of future prices

in any period. If consumers are risk neutral (γ = 0), and hence not driven to stockpile by any

precautionary or hedging motive, an estimate of their expectations can be recovered as

̂E[p1i − p0i] = ĉI∗i .

The key assumption here is that the storage cost c is stable over time, including across crisis and

non-crisis periods.

Step 2: A Forecast Test. Notice from equation (2), which governs optimal hoarding, that

E[p1i − p0i] = −h0i +
(
c+ γσ2

pi

)
I∗i .

24If σ2
pi

= 0, the first order condition gives Ii∗ = 1
c (p1i − p0i).
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If consumers have rational expectations, this implies that

p1i − p0i = −h0i +
(
c+ γσ2

pi

)
I∗i + εi,

where Cov(εi, I∗i ) = 0. Given this, a linear regression of ex-post price changes during the crisis

period, p1i − p0i on our risk neutral price forecasts ( i.e., ̂E[p1i − p0i] measured using (i) using non-

crisis estimates of storage costs ĉ and (ii) observable stockpiling during the crisis I∗i ), provides

coefficient:

β =
Cov[−h0i +

(
c+ γσ2

pi

)
I∗i + εi, cI∗i ]

Var(ĉI∗i )

= 1 + σ2
pi

γ

c
− Cov[h0,i, cI∗i ]

Var(cI∗i )

The slope β is our object of interest. It is composed of three terms. If households are risk neutral

(γ = 0) and motivated only by speculation we have only the first term: β = 1. This is a standard

rational forecast result, and provides us a benchmark.

If consumers are risk averse (γ > 0) but have no precautionary hedging incentive (bi = 0), we

have the first two terms: β = (1 + σ2
pi
γ
c ) > 1. A risk averse household will speculate less than a

risk neutral households, so will increase quantities by by a smaller amount for the same forecasted

increase in prices. If bi > 0 the third term enters. Because Cov[h0,i, cI∗i ] > 0, this term pushes β

downward. A larger precautionary or hedging demand leads to a flatter slope that is closer to 0.

As a consequence, a slope of β between 0 and 1 provides a quantification of the relative importance

of precautionary versus speculative motives.

This second step is reminiscent of rational forecast tests following Mincer & Zarnowitz (1969);

Nordhaus (1987); Keane & Runkle (1990). The slope of the regression of realized price adjustments

on expected price adjustments captures the efficiency of household forecasts. A slope close to zero

means household hoarding is driven by precautionary purchases and hence forecasts are not as

efficient.
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5.3 Implementing Step 1

We now turn to implementing our test using data from the 2008 rice crisis. We conduct our anal-

ysis at 4 levels of aggregation: the store-UPC level, the store-brand level, the store level, and the

brand level. To build a risk neutral forecast, we require two objects. The first is c, the storage

cost for households. We recover this by estimating consumer responsiveness to typical retail sales

following (Hendel & Nevo, 2006). We provide details of this estimation and various robustness

checks in Appendix B. We generally find an elasticity to the value of a retail sale of around 1.2. If

consumers know that the price of a given store-UPC will increase by 10% when a promotion ends,

they increase purchases by 12%. This elasticity allows us to back out ĉ, our estimate of storage

costs.

The second is an estimate of the degree of stockpiling that took place in the crisis for each unit

i. We measure this as Quantity Growthi, the percentage increase in quantity for unit i relative to

a benchmark. In our primary specifications, we estimate Quantity Growthi by comparing average

weekly sales in the hoarding period to a baseline of average weekly sales in the pre-hoarding

period.25 We construct this (and estimate ĉ) separately at the store-UPC, store-brand, store, and

brand levels. We can then construct our risk neutral price forecast as:

Forecasti = ĉ× Quantity Growthi.

We next turn to comparing these to price realizations.

5.4 Implementing Step 2

The second step of the test involves regressing realized shelf price changes on our risk neutral

forecasts. For our measure of realized price increases, we once again use Post-Hoarding Price

Growthi, measured at the relevant level of aggregation (e.g. store-UPC). Our regressions are then:

Post-Hoarding Price Growthi = α+ βForecasti + ui. (4)

25This follows the definition in footnote 22. An alternative would be to use the post-hoarding period, which might
better capture typical static weekly purchases at the post-hoarding price. However, we chose to use pre-hoarding period
sales due to concerns that purchases in the immediate post-hoarding period would be low due to dynamic reallocations.
Ultimately, the results are qualitatively similar whether we use the pre-hoarding period, the post-hoarding period, or
the full sample excluding the hoarding period.
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Because an estimate of ĉ is necessary to compute Forecasti, we bootstrap over both steps to con-

struct standard errors, with clusters drawn at the unit level over 1000 repetitions.

5.5 Test Results

We present results of our efficiency tests in Table 5. Our key object of interest is the coefficient β.

Across store-UPCs, store-brands, and stores, we find consistent estimates of β that are between

0.1 and 0.15 and statistically significant. Our brand level coefficient is also positive, although it is

smaller and not statistically significant (which may be unsurprising, given the very small number

of brands and substantially higher standard errors).

The fact that β is positive provides evidence that the speculative motive is present, directly

mirroring the cross-sectional regressions shown in Section 4. Excess purchases, and hence our

risk-neutral forecasts, contain information about the cross section of coming price increases. The

fact that β is below 1, and in fact is closer to 0.1, indicates that the precautionary motive is also at

work, and perhaps dominant. These results are consistent at the product, brand, and store level.

Appendix Figure A.VII presents binned scatter plots of the same relationships. These plots

(and our tests) provide a scaled version of the cross-sectional relationships shown in Figure 6, with

the slope β scaled so as to be interpreted in accordance with our forecast test. The imposed black

line 45-degree line provides an efficient risk-neutral benchmark, with a slope of 1. Again, we see

positive correlations across the board, albeit with slopes that are meaningfully below 1. All in, the

results of our test suggest that the speculative motive is responsible for a non-trivial portion of

observed hoarding during the crisis, but that the precautionary motive is a more dominant driver

in this episode.

6 Rice Hoarding in the COVID Crisis

Our analysis suggests that the speculative motive generated by sticky prices was a significant, if

perhaps not dominant, driver of household hoarding in the 2008 rice crisis. A natural question

is whether the same motive is relevant in other episodes. As a final step, we consider the role of

sticky prices in perhaps the most salient hoarding experience in recent memory: the run on food,

staples, and other goods at the beginning of the COVID-19 pandemic.
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Unfortunately, the pandemic does not provide quite as clean a laboratory as the 2008 rice crisis

for studying the role of sticky prices. While COVID-19 and the associated regulatory restrictions

certainly entailed a supply shock (which ultimately impacted prices) they also surely had non-

trivial impacts on household demand. Consumers faced a need for new, pandemic specific goods

such as hand sanitizer and masks, changes in income due to job loss, furlough, or government sup-

port measures, and different consumption needs to suit daily life while locked-down or working

from home. Consequently, abnormal consumer purchase patterns during the crisis likely involve

a more complex interaction between supply and demand side shocks.

Despite these caveats, this section presents evidence that an implicit promotion motive was

a driver of rice hoarding in the early stage of the COVID-19 pandemic. We do so using a more

limited regional scanner database that covers approximately 1000 stores belonging to three major

supermarket chains in the south.26 Our data is derived from a frequent-shopper card database that

records daily transactions for all customers visiting the store (transactions include non-card users

and employee cards). We observe detailed information on quantities, prices, and promotions at

the UPC level. In addition, we observe detailed product information (package size, brand name)

as well as exact locations of stores. For our analysis, we aggregate the individual card transactions

to the UPC-Store-Week level and use data from Jan 1, 2020 to July 1, 2020. We focus only on UPCs

listed in the rice category.

We begin by presenting simple, time-series evidence that mirrors the analysis conducted in

Section 3. Specifically, Panel A of Figure 7 plots prices and quantities for rice in the first 6 months

of 2020. The red line shows total weekly quantity sold in our sample (normalized by the mean over

the sample period. The blue line shows the sales weighted unit-price of rice, again normalized by

its mean over the period. There are two key takeaways. First, there was substantial hoarding of

rice at the outset of the COVID-19 crisis. There is an extreme spike in quantities sold the week

of March 11th-17th, 2020, which coincides with the proclamation of a national state of emergency

on March 13th, 2020. Second, there is a modest, but noticeable increase in the price of rice in the

weeks following this aggressive hoarding, but no meaningful increase the week of the 11th-17th

itself. Indeed, during the 11th-17th, the (sales weighted) price was marginally below the average

26Appendix Figure A.VI shows the geographical locations of the stores in the data along with demographic informa-
tion for the Zip codes (from 2019 Census ACS-5yr files).

22



for the first 10 weeks. The following week (the 18th-24th) prices rose by roughly 15 percent and

stayed consistently high through the remainder of our sample period.

In other words, extensive household hoarding appears to have preempted the shelf-price in-

crease generated by the crisis, just as in the 2008 episode. This is consistent with sticky prices

driving consumers to stockpile due to an implicit promotion motive. To confirm this intuition, we

next turn to the cross-section of products and stores. Following Section 4, we once again consider

the relationship between excess purchases at the UPC×Store level during the hoarding period

(which we define as the week of March 11th-17th), and subsequent price increases after the hoard-

ing period. If the intensity of hoarding predicts later price hikes in the cross-section, we take this

as evidence that consumers are driven by the implicit promotion created by sticky prices.

As the upward slope in Panel B of Figure 7 shows, we find that consumers hoarded more

aggressively in the products that later experienced larger price increases, just as in the 2008 rice

crisis. Products with greater excess purchases the week of the 11th-17th (in percentage terms),

saw larger price hikes in the subsequent weeks. This pattern suggests that consumers had some

information about coming price changes at the product level and that this information drove their

hoarding patterns, at least to some extent, during the early portion of the COVID crisis.

Taken together, this evidence suggests that sticky prices are a relevant driver of hoarding across

different episodes, and played a role in the stockpiling that occurred in March of 2020. However,

a few points of qualification are valuable to note. First, the magnitude of excess purchases during

this episode (seen in Panel A of Figure 7) exceeds that in the 2008 crisis, particularly relative to the

scale of the later price hike. This suggest that there may have been substantial additional drivers

of hoarding during this period, in addition to the speculative motive. This is unsurprising given

the demand shifts discussed earlier and the deep uncertainty that existed at the time. Second,

efficiency tests, in the vein of those conducted in Section 5 further confirm this notion. The β

coefficient on these tests is an order of magnitude below the coefficient estimated for the rice crisis

(approximately 1%, versus over 10%, using the same elasticity). Again, this suggests that other

factors: precaution, panic and demand, were more dominant drivers of observed hoarding during

the COVID episode.
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7 Conclusion

Little is known about the determinants of hoarding despite its importance in disrupting the well-

functioning of markets. To make progress on this issue, we analyze major recent hoarding episodes

using an optimal inventory model in which risk-averse agents hoard both to hedge against price

uncertainty and to speculate when prices are predictable. Using supermarket scanner data from

two recent hoarding episodes, the 2008 rice crisis and COVID-19, we provide reduced-form evi-

dence of the importance of the speculative motive due to sticky retail prices. Our quantification

suggests that speculation accounts for a meaningful fraction of overall hoarding, although smaller

than precaution in our episodes. There are a number of paths for future research, including work-

ing out the implications of these two types of motives for anti-price gouging regulation, firm price

setting, and supply chain risk management.
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FIGURE 1: GLOBAL RICE COMMODITY PRICES RISE FOLLOWING INDIA EXPORT BAN
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Notes: The black line displays the rice series from the IMFs Primary Commodity Price System. The series measures the Thailand
nominal price quote for 5 percent broken milled white rice in USD per metric ton. The first vertical line denotes India’s ban on rice
exports in October 2007, while the second vertical line denotes June 2008, to approximate the timing of Japan’s agreement to release
rice reserves.
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FIGURE 2: DELAYED PRICE UPDATING BY US RETAIL STORES
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Notes: Plot displays the fraction of stores that have updated prices in the wake of the shock to international prices. A store is determined
to have updated its price if the price is greater than 125 percent of the 2007 average. Grey region denotes our designated hoarding
period, the weeks of April 19th-May 10th.
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FIGURE 3: HOARDING ANTICIPATES CHANGE IN SHELF PRICES
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Notes: The black line displays a proxy for the US wholesale rice price at the monthly level. The proxy is based on average f.o.b.
price for long grain rice at selected milling centers in Southwest Louisiana. Data provided by USDA, based on data from Agricultural
Marketing Service, National Weekly Rice Summary. The red line displays average weekly sales at the store level, based on scanner data.
The blue line displays the weekly average shelf price based on our store level rice prices. All variables are normalized by the average
over the period shown: 2007-2009. Grey region denotes our designated hoarding period, the weeks of April 19th-May 10th.
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FIGURE 4: SUBSTANTIAL DISPERSION IN POST-HOARDING PRICE CHANGES
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Notes: Histogram of realized post-hoarding price changes, trimmed at the 1 percent level. Letting p̄h denote the average unit price

in the hoarding period and p̄a denote the average unit price after the hoarding period, it is defined as 100×
(

p̄a−p̄h

p̄h

)
. Store-UPC

includes all store-UPC pairs with at least 5 units sold on average per week in 2007. Store-Brand includes all store-brand pairs with at

least 5 units sold on average per week in 2007. Store refers to all stores in the sample while Brand refers to all rice brands with at least 5

units sold on average per week in 2007. The sample period covers 2007-2009, and the hoarding period is defined as the weeks of April

19th-May 10th, 2008.
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FIGURE 5: HETEROGENEITY IN UPC-LEVEL PRICE CHANGES CORRELATED WITH HOARDING
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LOW POST-HOARDING PRICE INCREASE

0

.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 P
ric

e 
or

 Q
ua

nt
ity

April 2007 April 2008 April 2009

Quantity Price

Notes: Average shelf price-per-ounce and ounces sold for UPC×store pairs with the highest and lowest post- hoarding period price
changes. Across products, prices are measured as per ounce. For a given UPC×store pair, the post-hoarding price increase is defined
as the ratio of the average price in the post-hoarding portion of our sample to the average price in the hoarding period itself (where the
period is defined as the weeks of April 19th-May 10th). High and low post-hoarding price increases are the UPC-store pairs in the top
or bottom quartile, respectively. Prices and quantities are normalized by the average over the sample period for the set of UPC×stores
used in each plot. Grey region denotes our designated hoarding period.

33



FIGURE 6: CROSS-SECTIONAL DIFFERENCES IN HOARDING PREDICT POST-HOARDING
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(B) STORE-BRANDS
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Notes: Binned scatterplots of post-hoarding prices increases on quantity increases during hoarding period. Letting p̄h denote the

average unit price in the hoarding period and p̄a denote the average unit price after the hoarding period, the price increase is defined

as 100×
(

p̄a−p̄h

p̄h

)
. If q̄h is the average quantity sold during the hoarding period, q̄b is average quantity sold in the pre-period the

quantity increase is 100×
(

q̄h−q̄b

q̄b

)
. The sample period covers 2007-2009, and the hoarding period is defined as the weeks of April

19th-May 10th, 2008. Store-UPC includes all store-UPC pairs with at least 5 units sold on average per week in 2007. Store-Brand

includes all store-brand pairs with at least 5 units sold on average per week in 2007. Store refers to all stores in the sample while Brand

refers to all rice brands with at least 5 units sold on average per week in 2007. Points represent means within ventiles of predicted price

discounts. Lines represent a linear fit through the underlying data. All variables are winsorized at the 1 percent level.
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FIGURE 7: STICKY PRICES AND HOARDING DURING THE COVID-19 PANDEMIC

PANEL A: PRICES INCREASED FOLLOWING COVID-DRIVEN RICE HOARDING
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PANEL B: CROSS-SECTIONAL DIFFERENCES IN HOARDING PREDICT PRICE INCREASES
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Notes: Panel A shows the dynamics of prices and quantities for rice in our sample of southern retailers in the first half of 2020. The
blue line shows the sales weighted unit price and the red line shows total quantity sold. Both are normalized by their mean over the
sample period. Panel B shows binned scatterplots of post-hoarding price growth against quantity growth at the store-upc level. Here,
we let p̄h denote the unit price in the week of March 11th-17th and p̄a denote the average unit price across weeks after March 17th.

Price growth is then defined as 100×
(

p̄a−p̄h

q̄h

)
. We let qh be the total quantity sold in the week of March 11th-17th and qb be the

average weekly quantity sold in the weeks before March 11th. We define quantity growth as
(

q̄b−q̄h

q̄b

)
. Points represent means within

ventiles of quantity growth.
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TABLE 1: SUMMARY STATISTICS

XXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX

Panel A: Stores

Mean S.D. 1st Percentile 99th Percentile
Quantity Sold (oz) 8068.5 18916.3 0 76776
Price (80oz) 5.39 1.61 2.34 9.67
Total Stores 10561

Panel B: UPC-Stores
Ounces per Unit 52.6 64.3 14 320
Units Sold 11.5 18.9 0 69
Quantity Sold (oz) 695.9 3537.7 0 7920
Price (80oz) 5.58 3.42 1.75 13.9
Total UPCs 547
UPC × Stores 71952

Panel C: Brand-Stores
Units Sold 27.0 40.2 0 180
Quantity Sold (oz) 1688.8 5323.4 0 16512
Price (80oz) 6.22 4.17 1.82 19.1
Total Brands 154
Brand × Stores 43953

Panel D: Households
Volume (oz) 1.83 23.7 0 48
Any Purchase 0.025 0.16 0 1
Volume|Purchase 71.9 130.5 12 480
Expenditure|Purchase 3.55 4.61 0.50 19.0
Total Households 42441

Summary statistics for weekly store and household data. Weekly prices are sales weighted averages within a
store, store-upc or store-brand, normalized to 80 ounces.

36



TABLE 2: EVIDENCE OF HOUSEHOLD HOARDING AND STICKY PRICES IN APRIL-MAY OF 2008

Commodity Prices and Sales Peak During Hoarding Period – Shelf Prices Do Not
XXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX XXXXXXXXX

IMF Commodities Price US Wholesale Price Quantity (HH) Shelf Price (HH) Quantity (Store) Shelf Price (Store)

Hoarding Period 499.4∗∗∗ 13.78∗∗∗ 8.443∗∗∗ −0.738∗∗ 3397.5∗∗∗ −0.662
(112.4) (4.960) (0.689) (0.366) (381.0) (0.409)

2007 Mean 332.4 19.3 7.57 4.73 8190.0 4.46
Observations 36 36 156 156 156 156

The first two columns show regressions of monthly time series from 2007-2009 on a dummy equal to one in April and May of 2008. IMF commodities price refers to the rice
series from the IMFs Primary Commodity Price System. The series measures the Thailand nominal price quote for 5 percent broken milled white rice in USD per metric ton.
US wholesale price refers to the average f.o.b. price for long grain rice at selected milling centers in Southwest Louisiana in USD per cwt (hundredweight). Provided by the
USDA based on data from Agricultural Marketing Service, National Weekly Rice Summary. Columns 3-6 show regressions of weekly time series from 2007-2009 on a dummy
equal to one during the hoarding period (the weeks of April 19th-May 10th). Quantity refers to the average quantity for households or stores in our data in ounces. Shelf price
(store) refers to average shelf price across stores or households normalized to 80 ounces. Price variables are sales weighted within households or stores and equal weighted
across stores or households. 2007 mean refers to the mean of the dependent variable in 2007. * p < 0.10, ** p < 0.05, *** p < 0.01.
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TABLE 3: EXCESS HOARDING PURCHASES PREDICT POST-HOARDING SHELF PRICE GROWTH

XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX

Dependent Variable: Post-Hoarding Price Growth

Store-UPCs Store-Brands Stores Brands

(1) (2) (3) (4) (5) (6) (7) (8)

Quantity Growth (%) 0.100∗∗∗ 0.113∗∗∗ 0.085∗∗∗ 0.112∗∗∗ 0.137∗∗∗ 0.090∗∗∗ 0.142∗∗∗ 0.111∗∗∗
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.004) (0.034)

Mean of Dep. Var. 26.5 26.5 26.5 28.9 28.9 28.9 27.4 26.3
Observations 69439 68662 68597 43065 42462 42447 9252 154

Store FE No Yes Yes No Yes Yes No No

UPC FE No No Yes No No No No No

Brand FE No No No No No Yes No No

Cross-sectional regressions of post-hoarding shelf price growth on quantity growth (excess purchases) at the store-UPC, store-brand, store and brand levels.
Post-hoarding shelf price growth is defined based on a comparison of average price in the post-hoarding period (from May 10th to the end of 2009) to the
average price during the hoarding period (the weeks of April 17th-May 10th). Quantity growth is defined based on a comparison of average purchases in
the hoarding period to average purchases in the pre-hoarding period (from the beginning of 2007 to April 17th). Store-UPC includes all store-UPC pairs with
at least 5 units sold on average per week in 2007. Store-Brand includes store-brand pairs with at least 5 units sold on average per week in 2007. Store refers
to all stores in the sample and brand refers to all rice brands with at least 5 units sold on average per week in 2007. Both variables are winsorized at the 1
percent level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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TABLE 4: EXCESS HOARDING PURCHASES PREDICT SHELF PRICE GROWTH: ROBUSTNESS

XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX

Panel A: Excess Hoarding Purchases Predict Shelf Price Growth Controlling for Price

Store-UPCs Store-Brands Stores Brands

(1) (2) (3) (4) (5) (6) (7) (8)

Quantity Growth (%) 0.103∗∗∗ 0.113∗∗∗ 0.059∗∗∗ 0.073∗∗∗ 0.096∗∗∗ 0.068∗∗∗ 0.090∗∗∗ 0.075∗∗
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002) (0.004) (0.033)

Price −0.957∗∗∗ −0.637∗∗∗ −13.610∗∗∗ −1.737∗∗∗ −1.704∗∗∗ −3.773∗∗∗ −4.983∗∗∗ −0.724∗∗∗
(0.030) (0.036) (0.119) (0.021) (0.024) (0.057) (0.113) (0.159)

Mean of Dep. Var. 26.5 26.5 26.5 28.9 28.9 28.9 27.4 26.3
Observations 69439 68662 68597 43065 42462 42447 9252 154

Store FE No Yes Yes No Yes Yes No No

UPC FE No No Yes No No No No No

Brand FE No No No No No Yes No No

Panel B: Excess Hoarding Purchases Predict Long Run Shelf Price Growth

Store-UPCs Store-Brands Stores Brands

(1) (2) (3) (4) (5) (6) (7) (8)

Quantity Growth (%) 0.113∗∗∗ 0.142∗∗∗ 0.100∗∗∗ 0.105∗∗∗ 0.140∗∗∗ 0.098∗∗∗ 0.108∗∗∗ 0.008
(0.002) (0.002) (0.002) (0.003) (0.003) (0.003) (0.008) (0.051)

Mean of Dep. Var. 26.9 26.9 26.9 28.0 29.0 28.0 27.1 31.0
Observations 60453 59542 59480 41033 40396 40380 9252 154

Store FE No Yes Yes No Yes Yes No No

UPC FE No No Yes No No No No No

Brand FE No No No No No Yes No No

Panel A presents cross-sectional regressions of post-hoarding shelf price growth on quantity growth at the store-UPC, store-brand, store and brand levels,
controlling for unit price-per-80 ounces. Panel B presents cross-sectional regressions of long run post-hoarding shelf price growth on quantity growth at the
store-UPC, store-brand, store and brand levels. Long run shelf price growth is defined based on a comparison of prices in the last week of our sample (the
last week of 2009) to average prices during the hoarding period (the weeks of April 17th-May 10th). Quantity growth is defined based on a comparison of
average purchases in the hoarding period to average purchases in the pre-hoarding period (from the beginning of 2007 to April 17th). Store-UPC includes all
store-UPC pairs with at least 5 units sold on average per week in 2007. Store-brand includes all stores with at least 5 units sold on average per week in 2007.
Store refers to all stores in the sample and brand refers to all rice brands with at least 5 units sold on average per week in 2007. Both variables are winsorized
at the 1 percent level. * p < 0.10, ** p < 0.05, *** p < 0.01.
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TABLE 5: CROSS-SECTIONAL EFFICIENCY TEST

XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX

Store-UPC Store-Brand Store Brand

(1) (2) (3) (4)

Predicted Price Increase 0.116∗∗∗ 0.126∗∗∗ 0.147∗∗∗ 0.040
(0.001) (0.002) (0.006) (0.067)

Observations 69439 43953 9252 154

This table presents forecast tests, slopes from regressions of realized post-hoarding shelf price growth on predicted price
growth inferred from excess purchases. Post-hoarding shelf price growth is defined based on a comparison of average price
in the post-hoarding period (from May 10th to the end of 2009) to the average price during the hoarding period (the weeks of
April 17th-May 10th). Forecasted price growth is derived from observed quantity growth during the hoarding period. Specif-
ically: if q̄h is the average quantity sold during the hoarding period, q̄b is average quantity sold in the pre-period, and 1

ĉ is an
estimated elasticity to temporary sales at the corresponding level of observation from Appendix Table B.I, we define the fore-

cast to be
(

q̄b−q̄h

q̄b

)
× ĉ. The sample period covers 2007-2009, and the hoarding period is defined as the weeks of April 19th-

May 10th, 2008. Store-UPC includes all store-UPC pairs with at least 5 units sold on average per week in 2007. Store-Brand
includes all store-brand pairs with at least 5 units sold on average per week in 2007. Store refers to all stores in the sample and
Brand refers to all rice brands with at least 5 units sold on average per week in 2007. Realized and predicted price discounts
are winsorized at the 1 percent level. Standard errors are based on a clustered bootstrap at the cross-sectional unit level (e.g.
Store-UPC) with 1,000 iterations. * p < 0.10, ** p < 0.05, *** p < 0.01.

40



Internet Appendix: For Online Publication

A Supplementary Tables and Figures

FIGURE A.I: NIELSEN PANEL DEMOGRAPHICS

Notes: This figure plots the distribution of demographics of the overall Nielsen Panel.
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FIGURE A.II: ALTERNATIVE PRICE MEASURES: FIXING PRODUCT CHARACTERISTICS
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Notes: The black line displays a proxy for the US wholesale rice price at the monthly level. The proxy is based on average f.o.b.
price for long grain rice at selected milling centers in Southwest Louisiana. Data provided by USDA, based on data from Agricultural
Marketing Service, National Weekly Rice Summary. The red line displays average weekly sales at the store level, based on scanner data.
The solid blue line displays the sales weighted weekly average shelf price. The dotted blue line shows the equal weighted unit price
across all UPCs that appear consistently across all weeks in our sample period. All variables are normalized by the average over the
period shown: 2007-2009. Shaded region denotes our designated hoarding period, the weeks of April 19th-May 10th.
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FIGURE A.III: HOUSEHOLD INVENTORIES LEAD RETAIL PRICES
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Notes: The black line displays the rice series from the IMFs Primary Commodity Price System. The series measures the Thailand
nominal price quote for 5 percent broken milled white rice in USD per metric ton. The blue line shows shelf prices, calculated as the
average unit price paid by households in our panel. Both price series are normalized to the mean over the sample period. The red
line shows household inventories. Inventories are calculated following the procedure in Hendel & Nevo (2006). For each household,
we estimate monthly consumption based on average purchases throughout our sample period. We then construct inventories in each
month as the cumulative difference between purchases and consumption up to that month.
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FIGURE A.IV: RICE FUTURES
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Notes: Figure plots daily close prices for rice futures with expiration in May 2008, July 2008 and September 2008 from the CME. The
futures contract is for 2,000 cwt (hundredweight), which corresponds to about 200,000 pounds or circa 91 metric tons, of rough rice, no.
2 or better, and the price quote is in cents per hundredweight. Vertical line denotes April 23, 2008, the peak of prices for all 3 contracts.
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FIGURE A.V: GLOBAL RICE COMMODITY PRICES RISE FOLLOWING INDIA EXPORT BAN
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Notes: The black line displays the rice series from the IMFs Primary Commodity Price System. The series measures the Thailand
nominal price quote for 5 percent broken milled white rice in USD per metric ton. The red line shows weekly total quantity sold for
stores in our sample, and the blue line shows weekly Google search volume. All variables are normalized by the mean over the sample
period. The first vertical line denotes India’s ban on rice exports in October 2007, while the second vertical line denotes June 2008, to
approximate the timing of Japan’s agreement to release rice reserves.
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FIGURE A.VI: GEOGRAPHIC DISTRIBUTION OF STORES IN REGIONAL DATA

Notes: This figure presents the geographic location of stores in the data used to analyze the COVID-19 pandemic in Section 6 as well
as demographic information for the zipcodes they are located in.
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FIGURE A.VII: CROSS-SECTIONAL DIFFERENCES IN PREDICTED PRICE INCREASES VERSUS

POST-HOARDING PRICE INCREASES
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(B) STORE-BRANDS
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Notes: Binned scatterplots of post-hoarding prices growth on forecasted price growth. Letting p̄h denote the average unit price in the

hoarding period and p̄a denote the average unit price after the hoarding period, the price increase is defined as 100×
(

p̄a−p̄h

p̄h

)
. The

forecasted price increases are derived from observed quantity growth during the hoarding period. Specifically: if q̄h is the average

quantity sold during the hoarding period, q̄b is average quantity sold in the pre-period, and 1
ĉ

is an estimated sale elasticity at the

corresponding level of observation from Appendix Table B.I, we define the forecast to be
(

q̄b−q̄h

q̄b

)
× ĉ. The sample period covers

2007-2009, and the hoarding period is defined as the weeks of April 19th-May 10th, 2008. Store-UPC includes all store-UPC pairs with

at least 5 units sold on average per week in 2007. Store-Brand includes all store-brand pairs with at least 5 units sold on average per

week in 2007. Store refers to all stores in the sample while Brand refers to all rice brands with at least 5 units sold on average per

week in 2007. Points represent means within ventiles of predicted price discounts. Lines represent a linear fit through the underlying

data. All variables are winsorized at the 1 percent level, except the brand level plot which is winsorized at the 5 percent level to avoid

stretching the x-axis.
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TABLE A.I: ROBUSTNESS FOR CROSS-SECTIONAL RELATIONSHIP BETWEEN QUANTITIES AND PRICES

XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX XXXXXXXXXXX

Dependent Variable: Post-Hoarding Price Growth

Low Sales Variance High Sales Variance Sales Weighted Low Asian Pop. High Asian Pop. Low Rice Consumption High Rice Consumption

(1) (2) (3) (4) (5) (6) (7)

Quantity Growth (%) 0.097∗∗∗ 0.105∗∗∗ 0.081∗∗∗ 0.092∗∗∗ 0.115∗∗∗ 0.103∗∗∗ 0.104∗∗∗
(0.002) (0.002) (0.001) (0.002) (0.002) (0.002) (0.002)

Observations 30907 30904 69439 31419 30381 32263 29537

All regressions are at the store-upc level Letting p̄h denote the average unit price in the hoarding period and p̄a denote the average unit price after the hoarding period, post-hoarding price growth is defined as

100×
(

p̄a−p̄h

p̄a

)
. If q̄h is the average quantity sold during the hoarding period and q̄b is average quantity sold in the pre-period we define quantity growth to be

(
q̄b−q̄h

q̄b

)/
δ̂. The sample period covers 2007-2009, and

the hoarding period is defined as the weeks of April 19th-May 10th, 2008. Store-UPC includes all store-UPC pairs with at least 5 units sold on average per week in 2007. Price and quantity growth are winsorized at the
1% level. Low vs. high sales variance are store-UPC pars with below vs. above median coefficient of variation of weekly quantity sold in 2007. Sales weighted refers to means and regressions weighted by pre-hoarding
period average sales. Low and high Asian population refers to above vs. below median stores in terms of county level Asian population. High and low rice consumption refers to above vs. below median stores in terms
of total average weekly rice purchases in 2007 at the county level. * p < 0.10, ** p < 0.05, *** p < 0.01.

48



B Estimating Consumer Responsiveness to Sales

A key input of our forecast test is an estimate of c, the parameter governing storage costs. Our

strategy follows from the first order condition shown in Equation 2. We assume that during a

typical retail sale or promotion, there is no uncertainty over the size of the sale (and hence the

normal price that the product will return to in the future, after the sale concludes). This allows us

to set σ2
p = 0 and implies that during a retail sale:

I∗i =
1
c
(p1i − p0i).

Given this, we can estimate the parameter δ = 1
c using data from standard retail sales for rice. In

our implementation, this effectively captures the elasticity of demand with respect to the value of

a retail sale.

Our primary definition of retail sales or promotions is constructed at the store-UPC level. Fol-

lowing the approach in Hendel & Nevo (2006) we define sales relative to the modal price. Specifi-

cally, we consider a store-UPC to be on sale if the price is below the modal price in the correspond-

ing half year period (e.g. January-June 2007 or July-December 2007). Because we simultaneously

consider different rice products and sizes, we normalize price changes by p0i and focus the value

of sales in percentage terms as our measure of p1i − p0i.27 When aggregating to the store-brand

level, store level, or brand level, we take the equal weighted average across all UPCs. Our results

are not sensitive to alternative definitions, for example, comparing the current price to the modal

price in the preceding 6 months or excluding any promotions that last longer than four weeks.

UPC level prices are equal to the modal price in the corresponding half year period most of the

time—just over 70 percent of all store-UPC-weeks observed in our full retail sample. Appendix

Figure B.I shows an example of our definition for a single UPC in the pre-hoarding period. The

black line denotes periods in which there is not a retail sale while the red line denotes periods with

a retail sale. Most UPCs display similar patterns, with sharp and temporary deviations from a

relatively stable base price (at varying frequencies).

Our basic specification takes the following form for unit i in week t (where i represents a

27Specifically, we define a Sale Value=max{Modal Price-Price
Price , 0}. This captures the percentage increase in price a con-

sumer expects to occur when the sale ends. We refer to this as the value of the sale.
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household-brand-store, a store-UPC, a store-brand, a store, or a brand depending on the regres-

sion):

yit = δSale Valueit + γi + ηt + εit. (5)

Here, yit represents the quantity of rice. γi and ηt represent unit and week fixed effects, respectively.

Unit fixed effects are intended to capture cross-sectional differences in the price level, while our

sale definition—relative to a time-varying modal price—is intended to capture high frequency time

series variation in the price. Ideally, this would leave us with an estimated elasticity δ̂ that largely

captures the intertemporal shift in purchases generated by a temporary sale. However, because the

response during sales may also be a real consumption response to a lower price, we also explicitly

control for the price level in some specifications. We cluster our standard errors at the unit level

throughout. We include all weeks from 2007-2009 except for those within the hoarding period

itself.

We present results from regressions of this form in Table B.I. Columns 1-3 take the household-

brand-store as a unit. We consider all household-brand-store combinations that satisfy the fol-

lowing two criteria: (i) the household purchases that brand in that store at least once during our

sample and (ii) the store-brand combination appears in our store level data. As noted in Section 2,

this leaves us with nearly 18,000 households purchasing 168 brands at 8,194 stores. The dependent

variable is the number of ounces of rice purchased.

The results indicate that households indeed purchase more when rice is on sale. Column 1

suggests that a sale value of 10 percent leads households to purchase 0.12 more ounces for any

brand they are observed purchasing in the sample period. This is roughly 30 percent of the mean.

Column 2 shows that this sale-responsiveness is effectively unchanged when conditioning on the

price level, suggesting that these estimates capture the response to a temporary discount, and

not a more general consumption elasticity. Column 3 shows a more flexible specification of the

relationship, including dummies for sale vales up to 10 percent, between 10-20 percent, between

20-30 percent, and over 30 percent in place of the linear term, with similar results.

When considering store-UPC level data in Columns 4-6 we see a similar pattern: quantity sold

increases when rice is on-sale. For these and all remaining columns in the table, yit represents
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log(ounces sold).28 The coefficient in column 4 is 0.012, suggesting that a sale value of 10 percent

generates a roughly 12 percent increase in quantity sold. The magnitude drops slightly, to 0.008,

when we include a control for the price level, suggesting that a small portion of the estimate in col-

umn 4 captures a consumption response and not simply an intertemporal storage motive. Column

6 shows a more flexible specification, mirroring column 3.

The remaining columns of Table B.I show the specification in Equation 5 with the unit defined

to be the store-brand, store, or brand. The coefficients are generally consistent with our store-UPC

level results, although the point estimates are slightly smaller, particularly at the store-level. We

use the results in columns 4, 7, 8 and 9 as inputs when computing forecasts at the store-UPC,

store-brand, store, or brand level below.

To summarize, at the Store-UPC level, our estimate δ̂ is 0.012, indicated an elasticity of 1.2. This

suggests that if consumers expect a price to increase by 10% when a sale ends, they will increase

quantity purchased by 12%. Our estimate ĉ is simply 1
δ̂

B.0.1 Robustness for estimates of sales elasticity

We next present a series of robustness exercises to support the reliability of our estimates of the

sale elasticity δ.

Considering only the pre-crisis period: One concern is that price dynamics surrounding the crisis

and hoarding episode might contaminate our estimates of δ̂. To address this, Appendix Table B.II

repeats the analysis in Table B.I, but includes only data from 2007. We see similar, if marginally

larger, estimates across all specifications.

Using chain level pricing policies to address endogenous sales: A further concern is that our

estimates are biased due to classic endogeneity concerns. The sales we identify, might, in principle,

by driven by changes in demand, or both might be driven by some omitted factor. While we

generally believe our OLS approach to be the simplest and most transparent way of estimating δ,

and find the consistency of our results across aggregation levels (and given the rich set of fixed

effects) to be reassuring, we conduct robustness exercises here to address a particular form of

28We use levels in our household regressions due to the large number of 0s and a substantially smaller degree of
dispersion.
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endogeneity. Specifically, we consider the possibility that the sales identified by our algorithm

are endogenous responses to temporary and local changes in demand. For example, because a

sudden drop in consumer demand led a particular store to reduce prices. To address this, we

construct a proxy in the spirit of Hausman (1996) that exploits the uniformity of pricing policies

within supermarket chains (as documented in DellaVigna & Gentzkow, 2017). Our proxy is a

leave-store-out measure of sales at the supermarket chain level.29 This measure addresses concerns

that store-specific or other local demand shocks are driving pricing, but may of course still suffer

from similar endogeneity issues if demand shocks are correlated across different stores within the

same chain.30

Appendix Table B.III repeats the analysis in Table B.I, but includes our leave-store-out proxy in

place of the sale variable. The results are very similar to those when using our sale variable, likely

due to the uniformity of pricing policies within supermarket chains (although we have fewer ob-

servations as we are unable to identify the chain for all stores in our sample).31 While this approach

does not resolve all potential endogeneity concerns, the consistency with our main specifications

provides reassurance that focusing on OLS estimates is reasonable.

Non-parametric estimates of sale elasticities:. Our primary specification imposes a relatively

restrictive linear model. Of course, it is possible that the true underlying relationship is highly

non-linear, particular as sales become large or in the region close to 0 sale. Appendix Figure B.II

shows that linearity appears to be a reasonable approximation in our context. This figure presents

a binned scatter plot of log(ounces) sold against sales at the store-UPC level, with each dot repre-

senting the mean within a percentile.

Cross-price effects: When converting excess purchases into forecasts, one potential issue is dis-

tortions due-to cross-price effects. For any given product, excess purchases during the hoarding

episode might be driven not just by expectations of coming price changes for that product, but also

29The leave out mean for a given UPC is defined as the average sale on that UPC in that week for other stores in the
same chain as the store in question. This captures the degree to which a UPC was on sale at other stores within the same
chain. The average of this leave out mean is 2.5 percent, with a standard deviation of 5.8 percent. When aggregating to
the Store-Brand or Store, we take the equal weighted average leave out mean sale across UPCs.

30Note that our results are similar if we impose geographic constraints on our leave-out proxy, for example, consid-
ering only stores in the same chain located in other counties or states.

31In fact, IV specifications that instrument for our sale variable with this leave-store-out proxy give nearly identical
results, with first stage coefficients very close to one.
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by changes in relative prices across products (either contemporanous relative prices or expected

future relative prices). If promotions drive meaningful cross-product substitution, this would con-

strain our ability to recover expectations about price changes from observed quantity changes

without fully estimating the demand system.

Appendix Table B.IV suggests that there are negligible cross-price impacts of promotional sales

in our sample. This table presents versions of the specification shown in Equation 5 estimated at

the household-brand-store (i.e. the specifications shown in Columns 1-3 of Table B.I). However, as

a dependent variable, these regressions include total ounces purchased by the household at all other

brands, excluding the brand in question. This captures the relationship between a sale in a given

brand and purchases of all other brands. Across specifications, we see fairly tightly estimated 0 ef-

fects, indicating limited impacts of sales for one product on purchases of another at the household

level. One potentially explanation for this is that our estimates largely reflect intertemporal substi-

tution of purchases, rather than meaningful changes in consumption. Regardless, while it is still

possible that there are meaningful cross-product impacts of promotions, these estimates suggest

that choosing to set such effects aside as a first approximation is reasonable.

Other specifications: Our results are also robust to a number of alternative specifications not

shown here, including eliminating or varying the level of fixed effects, controlling for consumer in-

ventories, considering only temporary sales (two weeks or less), and using a rolling or backwards

looking window to define the modal price.
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FIGURE B.I: EXAMPLE OF RETAIL SALES
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Notes: Example price path for a UPC in our sample in the pre-hoarding period (January 1st 2007-April 19th, 2008). Red portions
indicate sales as identified by our algorithm.
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FIGURE B.II: LINEAR APPROXIMATION TO SALE RESPONSIVENESS
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Notes: Binned scatter plot of store-UPC level log ounces of rice sold on percentage sale. Sample is a weekly balanced panel from
2007-2009 of all observed store-upc pairs with an average of more than 5 units sold per week in 2007. Percentage sale is the percentage
discount of the weekly price relative to the modal price in the corresponding half year period (January-June vs. July-December). Scatter
plot shows each percentage sale between 1-50. Red line shows a linear fit through the raw data.
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TABLE B.I: CONSUMER RESPONSES TO RETAIL SALES

XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX

Quantity Purchased (oz) Log(Ounces Sold)

HH-Brand Store-UPC Store-Brand Store Brand

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Sale Value 0.012∗∗∗ 0.011∗∗∗ 0.012∗∗∗ 0.008∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.004
(0.002) (0.002) (0.001) (0.001) (0.001) (0.000) (0.005)

Sale Value: 0-10 Percent 0.099∗∗∗ 0.168∗∗∗
(0.019) (0.008)

Sale Value: 10-20 Percent 0.216∗∗∗ 0.255∗∗∗
(0.039) (0.016)

Sale Value: 20-30 Percent 0.284∗∗∗ 0.403∗∗∗
(0.078) (0.017)

Sale Value: 30+ Percent 0.418∗∗∗ 0.631∗∗∗
(0.104) (0.036)

Unit Price −0.022∗∗ −0.123∗∗∗
(0.011) (0.024)

Mean of Dep. Var. 0.57 0.57 0.57 5.77 5.77 5.77 6.61 7.43 9.82
Observations 4466506 4466506 4466520 10465608 10465608 10465671 6614629 1420020 22290

HH-Store-Brand FE Yes Yes Yes No No No No No No

Store-UPC FE No No No Yes Yes Yes No No No

Store-Brand FE No No No No No No Yes No No

Store FE No No No No No No No Yes No

Brand FE No No No No No No No No Yes

Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Regressions of weekly ounces purchased (at the household-brand-store level) or log quantity sold (at the Store-UPC, Store-Brand, Store and Brand levels) on the sale value in per-
centage term. A sale is defined as a price below the modal price in corresponding half year period (January-June or July-December) for a given UPC in a given store. If pm is the
modal price, and ps is the sale price, the sale value is defined as pm−ps

ps
. Sale values are set to 0 if the price is at or above the modal price. When aggregating to the Store-Brand,

Store, or Brand, we take the equal weighted average sale across UPCs. Samples are weekly balanced panels from 2007-2009 omitting the hoarding period. The HH-Brand Sample
consists of all household-brand-store combinations that satisfy the following two criteria: (i) the household purchases that brand in that store at least once during our sample and
(ii) the store-brand combination appears in our store level data. Store-UPC includes all store-UPC pairs with at least 5 units sold on average per week in 2007. Store-Brand includes
all store-brand pairs with at least 5 units sold on average per week in 2007. Store refers to all stores in the sample and Brand refers to all rice brands with at least 5 units sold on
average per week in 2007. * p < 0.10, ** p < 0.05, *** p < 0.01.
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TABLE B.II: CONSUMER RESPONSES TO RETAIL SALES (2007 ONLY)

XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX

Quantity Purchased (oz) Log(Ounces Sold)

HH-Brand Store-UPC Store-Brand Store Brand

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Sale Value 0.015∗∗∗ 0.013∗∗∗ 0.013∗∗∗ 0.009∗∗∗ 0.012∗∗∗ 0.013∗∗∗ 0.012∗∗
(0.002) (0.002) (0.001) (0.002) (0.001) (0.000) (0.005)

Sale Value: 0-10 Percent 0.096∗∗∗ 0.163∗∗∗
(0.029) (0.010)

Sale Value: 10-20 Percent 0.201∗∗∗ 0.297∗∗∗
(0.023) (0.017)

Sale Value: 20-30 Percent 0.274∗∗ 0.453∗∗∗
(0.131) (0.025)

Sale Value: 30+ Percent 0.737∗∗∗ 0.651∗∗∗
(0.177) (0.035)

Unit Price −0.025∗∗ −0.121∗∗∗
(0.012) (0.044)

Mean of Dep. Var. 0.59 0.59 0.59 5.81 5.81 5.81 6.63 7.51 9.92
Observations 1528019 1528019 1528020 3638944 3638944 3638961 2247243 477294 7775

HH-Store-Brand FE Yes Yes Yes No No No No No No

Store-UPC FE No No No Yes Yes Yes No No No

Store-Brand FE No No No No No No Yes No No

Store FE No No No No No No No Yes No

Brand FE No No No No No No No No Yes

Week FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

Regressions of weekly ounces purchased (at the household-brand-store level) or log quantity sold (at the Store-UPC, Store-Brand, Store and Brand levels) on percentage sales. A
sale is defined as a price below the modal price in corresponding half year period (January-June or July-December) for a given UPC in a given store. If pm is the modal price, and ps
is the sale price, the sale value is defined as pm−ps

ps
. Sale values are set to 0 if the price is at or above the modal price. When aggregating to the Store-Brand, Store, or Brand, we take

the equal weighted average sale across UPCs. Samples are weekly balanced panels for 2007. The HH-Brand Sample consists of all household-brand-store combinations that satisfy
the following two criteria: (i) the household purchases that brand in that store at least once during our sample and (ii) the store-brand combination appears in our store level data.
Store-UPC includes all store-UPC pairs with at least 5 units sold on average per week in 2007. Store-Brand includes all store-brand pairs with at least 5 units sold on average per
week in 2007. Store refers to all stores in the sample and Brand refers to all rice brands with at least 5 units sold on average per week in 2007. * p < 0.10, ** p < 0.05, *** p < 0.01.
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TABLE B.III: SALES AND UNIT PRICE RESPONSE TO QUANTITY OF RICE PURCHASED (LEAVE OUT MEAN OF SALES)

XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX XXXXXXX

Quantity Purchased (oz) Log(Ounces Sold)

HH-Brand Store-UPC Store-Brand Store

(1) (2) (3) (4) (5) (6) (7) (8)

Sale Value 0.014∗∗∗ 0.013∗∗∗ 0.016∗∗∗ 0.011∗∗∗ 0.017∗∗∗ 0.010∗∗∗
(0.003) (0.003) (0.001) (0.001) (0.002) (0.000)

Sale Value: 0-10 Percent 0.079∗∗∗ 0.065∗∗∗
(0.020) (0.006)

Sale Value: 10-20 Percent 0.256∗∗∗ 0.299∗∗∗
(0.032) (0.019)

Sale Value: 20-30 Percent 0.295∗∗∗ 0.440∗∗∗
(0.089) (0.017)

Sale Value: 30+ Percent 0.372∗∗∗ 0.739∗∗∗
(0.139) (0.048)

Unit Price −0.026∗∗ −0.123∗∗∗
(0.011) (0.023)

Mean of Dep. Var. 0.57 0.57 0.57 5.77 5.77 5.77 6.61 7.43
Observations 4466520 4466520 4466520 10417265 10417265 10417265 6595963 1420020

HH-Store-Brand FE Yes Yes Yes No No No No No

Store-UPC FE No No No Yes Yes Yes No No

Store-Brand FE No No No No No No Yes No

Store FE No No No No No No No Yes

Week FE Yes Yes Yes Yes Yes Yes Yes Yes

Regressions of weekly ounces purchased (at the household-brand-store level) or log quantity sold (at the Store-UPC, Store-Brand and Store levels) on the leave-
out-mean percentage sales at other stores in the same chain as the store in question. A sale is defined as a price below the modal price in corresponding half year
period (January-June or July-December) for a given UPC in a given store. If pm is the modal price, and ps is the sale price, the sale value is defined as pm−ps

ps
. Sale

values are set to 0 if the price is at or above the modal price. The leave out mean for a given UPC is defined as the average sale value on that UPC in that week
for other stores in the same chain as the store in question. When aggregating to the Store-Brand or Store, we take the equal weighted average leave-out sale across
UPCs. Samples are weekly balanced panels from 2007-2009 omitting the hoarding period. The HH-Brand Sample consists of household-brand-store combinations
that satisfy the following two criteria: (i) the household purchases that brand in that store at least once during our sample and (ii) the store-brand combination
appears in our store level data. Store-UPC includes store-UPC pairs with at least 5 units sold on average per week in 2007. Store-Brand includes store-brand pairs
with at least 5 units sold on average per week in 2007. * p < 0.10, ** p < 0.05, *** p < 0.01.
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TABLE B.IV: CROSS-SUBSTITUTION IN

RESPONSE TO RETAIL SALES

XXXXXXX XXXXXXX

Quantity Purchased (oz)

HH-Brand

(1) (2)

Sale Value −0.000 −0.000
(0.003) (0.003)

Unit Price −0.000
(0.005)

Mean of Dep. Var. 2.00 2.00
Observations 4466506 4466506

HH-Store-Brand FE Yes Yes

Week FE Yes Yes

Regressions of total weekly ounces purchased by a house-
hold excluding a given brand-store pair on the sale value
for that brand. A sale is defined as a price below the modal
price in corresponding half year period (January-June or
July-December) for a given UPC in a given store. If pm is the
modal price, and ps is the sale price, the sale value is defined
as pm−ps

ps
. Sale values are set to 0 if the price is at or above

the modal price. When aggregating to the brand level, we
take the equal weighted average sale across UPCs. Samples
is a weekly balanced panel 2007-2009 omitting the hoarding
period. We include all household-brand-store combinations
that satisfy the following two criteria: (i) the household pur-
chases that brand in that store at least once during our sam-
ple and (ii) the store-brand combination appears in our store
level data. * p < 0.10, ** p < 0.05, *** p < 0.01.
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